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SYMBOLS

A Matrix of constants (initial state quantities and
CA ,A ; (A1 , A2 )] specific force(s)) acquired in the analytical

aI solution (A1,2 formed by multiplication

J.A , (i=1,2)).
ta

B An operator matrix; B2 -[- .
20

[B2 ]

I. (j 1, 2, 3) The Idem matrix; subscript denotes order.

J. (i = 1,2, 3) Special single non-zero element diagonal matrices;

subscript denotes position of non-zero element,

(e.g. J1 0 2 1

K Matrix composed of initial value quantities only;

[K ,K ; (Ki' K2 )] ()I denotes quantities referred to the inertial

frame of reference (K obtained by multiplication,

J.K (i = 1, 2)).

T(p 4 ) Transformation matrices; used to transfer vectors
from one frame of reference to another.

(T(p) 12 cos p 7 B2 costp +J 3 ).

. , A' Dimensionless relative state vectors, referred to
the "local-rotating" frame of reference.

R, R' Dimensionless relative state vectors, referred to
the inertial frame of reference.

(p Transfer angle measured on the base, circular
orbit; also, the independent variable for the
dimensionless expressions.

, 77, C; Dimensionless cartesian relative "position" and
7', 7', (, "speed" scalars; referred to the local, rotating

frame of reference (( is the radial component;
r is the out-of-plane component; 77 completes
the orthogonal triad).
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S, H, Z; Dimensionless cartesian relative "position" and
V', H', Z' "speed" scalars; referred to the inertially aligned

frame of reference (5 is analogous to (; Z is
parallel to C; H completes the orthogonal triad).

T' i) The dimensionless specific force vector (scalars).
Subscripts (i) are included to denote direction (re-
lative to the triad of reference); (~) designates
the vector to be inertially aligned.

Subscripts and Superscripts

()o Designates an initial value quantity.

(. VUsed to indicate the matrix, to which affixed, con-
tains only initial valued quantities.

Used to indicate the matrix, to which affixed, con-
tains only 7 quantities.

(~)) A specialization of the matrix to which affixed
(specialized, as noted).

SELECTED EQUATIONS

1. Aa 1 o2J2

30 0 0 2 10 7

S2.+ [ ]+ [1 J 3

o 0

SL 1 : 1 o 2
3. 'J1+4J 21 9 [2B2  2J ]

(equation continued on next page)
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3. (cont)

1 0 0 -290: 4 2P3
4. - 2B2+3J2

. 'io+[J2-Jl] 2 +[ 2-. .]
5. A a

= 1+ V 1 l+ 2

1 o1 o o

2(1-cost) 2sincO cosP -sin

=- +0 +

15 sin~o 5(1- cospo) L2 (l+sin(P) 2 coscpj

20 1 H 1sin 0 Hp 0

. [2J 1 +5J2 2 T 2  + 1 +2J2 J 2 B2 +B( 2 -B B2 T 2(o+)]

+41 [J1 -J2 B IT (- +T2( +) ]

4 2J2 2 2 JP

(equation continued on next page)

viivil



2 sinP -2cos 0 0 + sin(P + Pcos p -cosp+psinp

5 cosp 5sin J 3 0 2 2(cos -c(sin () 2(sinp+Pcos(P)

S 0 cos p

2 cosp 0c

0 -1 0

8. J 1 B2 
=  = B2 2  J2B2 =B 2 J 1

0 -1o 2 -1 0
9. B2  B2 = I = .

1 0 20 -1

[cosP -sin P
10. T 2 =2 cos p +B 2 sin(= os T2(- '

sinp cos (

Scos , sincp

T 2+ )  1 2 cos cp - B2 sin p = - s in  cos

[svin cosp

vitt



CONSTRUCTION OF RELATIVE MOTION TRACES

I. INTRODUCTION

This report contains information on the construction of relative motion

traces developed as a consequence of various input conditions. The formulae

used here stem from analytical results acquired from a linearized set of govern-

ing ordinary differential equations. The inputs used in these solutions were the

initial state values and a specific force system which was assumed to be aligned

with either a local, rotating triad of reference or with an inertially aligned triad.

Since the results for these inputs are independent of one another the traces re-

present: (1) an initial values problem, without specific forces present; and (2),

the zero-initial values problem, where only the specific forces are considered.

In order to retain a compact and concise system of notation, throughout, the

state variables and the specific force(s) are manipulated and presented in a

dimensionless format. For these representations the relative motion state

variables have been normalized by the radius and speed, respectively, of the

base, circular reference orbit. The specific force has been normalized by the

specific centrifugal force experienced by a unit mass particle on the base orbit.

Since the analytical expressions used herein allow the in-plane state to

be separated from the out-of-plane variables, it is convenient to study the in-

plane cases first and then to examine the remaining situations. It will be seen

that these are natural separations as provided by the analytical solutions; and,

consequently, the in-plane cases may be described in rather elegant but simple

forms. This simplicity does not carry over to the out-of-plane situations be-

cause the homogenity of coefficients which appeared initially is not retained.

This leads to rather cumbersome. mathematical statements for some of the trace

descriptions; and, elegance is recaptured only when numerical constraints are

placed on the values assigned to the coefficient parameters.

The trace geometries which are constructed, sketched and discussed herein

arise (necessarily) from particular example cases. For all of these the input
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parameters have been chosen as positive valued constants. The results, then,

reflect this specification. Such selections do not alter the method of construction

but could influence the "direction" for some vectors, and/or the "size" (magnitude)

of some of the other quantities.

For the constructions described below, each trace has been formed by the

summing of vector components. Each component has been developed in accord

with natural separation of variables, or functions, from within the trace equations.

In this fashion each vector defines a particular geometry (or set of point loci);

and the ordered summing of these (geometries) leads directly to the final loci

for each trace. Necessarily, the traces are acquired for a given plane, referred

to a chosen triad of reference; hence there will be one in-plane trace and two out-

of-plane traces for each of the problem discussions. Where it is convenient to do

so these trace geometries are described by equations, geometric labels and by

illustrative sketches. It must be remembered that the task undertaken here is

primarily one of a tutorial nature. One should not expect these results to be all

inclusive; rather this is more of a compendium of data with the essential results

being graphic descriptions.

Each principal section of the report treats a separate problem segment

and construction. The manner in which these are treated is obvious from each

section headings. Explanatory comments are included to acquaint the reader

with these various operations and their results.

2



II. DISPLACEMENTS FOR THE ROTATING FRAME OF REFERENCE

According to the analytical expressions which describe the in-plane dis-

placements,these are dependent on the initial values pertaining to any particular

situation, and on the disturbance forces impressed on the system.

When one examines these expressions it is found that the influences which

affect the motion can be separated. As a consequence, for the descriptions which

follow the initial value problem ( -= 0) and the zero-initial state cases will be dis-

cussed as separate and independent entities.

II.1 The Initial Values Problem. The analytical solution for this case has

been obtained elsewhere as:

2 2+3(J2 1 ) Aa .V. 2 2  (B2 J1) Ko '(1)

wherein
[Aai.v. [J 1  +(J 2 -2J 1 )B (2)

and

Ko (4J +J2) o -2B2 ' . (3)

In order to reduce these expressions to a more useful and meaningful

form, the scalar quantities noted below will be introduced.

For present purposes let [A. . A (A1, A), and K - K (K, K2)

where each scalar is symbolically defined by:

N. =J. N,

with

N (A,K); i=1,2

In this regard it can be shown that:

SJ 1 ai.v. 2 l3J1  -2J 1 B 2  K1

2 22 L22 oO

KI = 2J1 (2 Ao -B2 A o),

3



and K2 = 2 (o- 2B2 (4)*

An inspection of Eq. (1) will indicate that the displacement vector can be

more conveniently discussed in terms of the three vector sum represented there.

Following this, then, the construction of a displacement locus, onto the ((, 17)-

plane, will be obtained using the vectors (- 6iI2 ; i = 1, 2, 3) noted below:

(1) First, let 61 [I2 2k()C] [I2+3(J2-J ) T p) [Aa i.v.. This is

equivalent to the matrix equation:

[61 = [-cos sinp A
=2 (5a)

L6 17 2singo 2cosp A2

Equation (5a) describes a (2:1) ellipse whose principal axes are proportional to

the magnitude of [Aa ] . . These axes are parallel to the reference frame's
a i.v.

coordinate directions; and the quadric equation for this figure is:

6( 2 1 1
2a 2 A 2  1 ( A+A = 1. (5b)2 A A 4 A +A

1 2 1 2

(2) The component of [I2 (()] expressed in terms of Ko leads to the

following two vectors:

2 2  (I ( 2 Ko }+ - . 2 J 1]Ko} (6a)

This equation describes a fixed locus and a moving point. The corresponding

matrix relations for these two vectors are:

6 2 1 0, K1(6b)

77 .0 1 K

and

3 3 (6c)

637 2 1 0 K2 
6

*See See SELECTED EQUATIONS for the scalar form of these expressions.
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Since Eqs. (5) and (6) represent vector components of the complete in-

plane relative position vector, then it follows that the required vector addition

can be performed in any convenient manner whatsoever. For instance, if the

vectors 61 and 6 are considered, first, one finds as the geometry a (2:1)

ellipse with its center shifted to the point locus 62. Adding to this the vector

63 it is seen that a general point on the displacement trace is described by this

simple mathematical operation.

On Fig. (1) a typical construction is shown, in sketch. There 62 is the

fixed component vector, locating the geometric center of the ellipse ()1). Con-

sequently, the vector sum (61 + 6 ) defines typical loci for the "shifted ellipse".

Adding vector 63((p) leads to position loci P(p), for this completed in-plane

trace. (For clarity the <p = 0 vector, 61(0), is also shown. This locates an

"origin" for the trace on the displacement plane).

O 6 (0)

FIG. 1. A typical construction for the in-plane displacements trace referred to
a rotating frame of reference. Here . (0) denotes the initial trace
position, on the ellipse; 62 locates a fixed point; and, 6 3(p) defines
the secular influence from the solution.
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1.2 The Non-Secular Initial Values Problem. In order to remove the secular,

or divergent, character from this solution it is necessary (see Eq. (6c)) that K1

be removed. In general this can be accomplished by either of two means; namely,

by initiating the motion so that: g, , = & ' =0; or by, (2), 711 = 24 (see Eq. (4).

For purposes of this discussion, it is sufficient, simply, to let K1 = 0 and

to examine the resulting trace(s). Here, then:

A j J= AB, ' ; K =0; K2=J2(A 2 B A ) . (7)
1 2 1 o 2 2 2o]2 22 2

As a consequence of this constraint, Eqs. (5) and (6) reduce to:

[614 -cosp sinp A 8
=2 (8a)

71 2 sino 2 cospJ A2 J

L2= (8b)

and

= . (8c)[ 01
According to Eqs. (8): the vector 61 describes (again) a (2:1) ellipse

(but with some reduction in size, due to AM)). Also, the vector 62 (again) des-

cribes the fixed locus, (t, r) 2 , but without an 4-component.

Necessarily, this modified trace is a closed curve with a geometric

center shifted away from the coordinate origin. In particular, Eqs. (8) define,

for 61' the (2:1) ellipse:

6 52( 61 1, (9a)

2 A( 1)2 +A2  2 A(1) 2 +A2

1 2 1 2
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and, for 62, the fixed locus

62 ? - K2 = 0. (9b)

A sketch for this solution is shown on Fig. (2), below. There (61(0)+ 62)

locates the "initial position" for this problem, while P(p) is a general trace

point for this (hypothetical) relative motion.

01 2

FIG. 2. A sketch depicting the Non-Secular Initial ValuesProblem geometry
for the in-plane motion referred to a rotating reference frame. The
vector 61 (0) locates the trace's initial position while the sum (31 +3 2
defines any general locus; e.g. P(c).

II.3 The Zero Initial Value Problem. Continuing with the construction of

in-plane displacements, the zero-initial-value problem which is described next

infers a situation where "thrusting" (or an externally applied force) is present.

For this discussion the assumption is that these motions originate from a zero

relative motion state (i.e., Jt = / ' = 0).

The analytical solution for this problem, with 7T (7T, ;, 7 ), leads

to motion traces described from:

7



I ) {[I2 +3(J2 - 1 )] T29- [A 7, (10)

wherein

[A E - 2J 2 ]' (11)

and

J1 +4J21-P [2B2 2 . (12)*
7 L21g2]. (12)*

As a suggestion, for illustrating the vector composition according to Eq.

(10), the recommendation is that the overall position vector be viewed as being

formed from three component vectors. One of these given in terms of [Aa ]L;

while T will contribute a pair of vectors - one for the constants, and another

proportional to the secular terms. In this regard the component vectors will

be defined as follows:

61 12 (() 1 2 +3(J2 1 2(9) Aa]T} ,  
(13a)

62%[I p)] [J 1 +4J2, 
(14a)

and

63 12 [ -) 2B2 2 2 .
(15a)

Expressed in matrix form the above equations are:

61( [-cos sin 1 7b

I 772 sinp 2 cos -277.

= , (14b)

and

6 0 2 7

6 -2 - 3 r(15b){37 2 ]
*See SELECTED EQUATIONS for the scalar form of this expression.
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It is obvious that the first vector (6 1) describes a (2:1) ellipse:

+ )2+( 2 = 1; (13c)

7 +47 2 7 +47

while the second (62) is indicative of a "fixed position" in the plane of motion.

Lastly, 63 suggests a parabolic relationship between the in-plane displacements:

7 3 (63t)2

677 = 6 + - . (15c)
3 37 8 7'T

Here, the sum ( 1 + defines those positional loci which are on the

ellipse with its center shifted away from the coordinate origin. Adding to this

the secular component (63), it is found that the resulting trace acquires more of

the parabola's character than that of the elliptic. (Primarily this is due to the

influence of the 2 -term in Eqs. (15)). A typical sketch for this trace is found

on Fig. (3) below.

Ip p) ,p

FIG. 3. A sketch showing the construction for an in-plane trace geometry
representing the Zero Initial Value Problem, 7 T(T , 7 , T ).
Here 3 locates a point on the ellipse; 2 defines a Aed~loc&;s
and, 3 'describes the secular influence. The arc (O to P) illustrates
trace oci for this problem.
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Interestingly, the secular influence provided by the 7 -terms is more

pronounced than that for the 7 -terms. Consequently, the trace geometry which

developes when 7 = 0 is most significantly altered. As a matter of fact, for

this condition the trace equations reduce to:

6 4= 7 (1-cosO),

and (15d)

6 7 = - 27 (p-sinp).

These expressions describe a cycloid on the displacement plane (see Fig. 4). By

constrast, the basic geometry which is developed for 7t = 0 is parabolic in
2

character. Again, this is largely due to the p0 -terms present in the parametric

equations.

P(

0

FIG. 4. Sketch of the displacement geometry for a Zero-Initial-Value Problem

when 7 = 0. The locus P(p) is described by 61P), 32 and 53P).
The trace (here) is a regular cycloid.

10



From the above discussion it is evident that divergence in these traces

cannot be as simply removed as it was for the initial values problem. Of

course this is to be expected since these impressed accelerations do not allow

the velocity to be cyclic in character. This, in turn, takes away the possibility

of cyclic variations in the displacements. Hence, the only means by which this

divergent characteristic can be removed is to eliminate the in-plane T-terms

completely.

11



III. THE HODOGRAPH FOR A ROTATING FRAME OF REFERENCE

To complete these discussions on construction of state variable traces,

as they arise from these problem types, the traces on corresponding hodograph

planes must be described. This is the topic for the following paragraphs.

Once again the two disturbing influences will be examined separately.

Thus, the hodographs described below will correspond directly to the displace-

ment traces discussed above.

III. 1 The Initial Values Problem. The analytical solution pertinent to this

part of the investigation has been obtained as:

I2 4' ) = [I 2 +3(J 2 J 1 )] [B2 T 2 ()] [Aai.v. -2 B2 J 1j K , (16)

wherein '[A ]. and K are the coefficients defined in Eqs. (2), (3), and (4).
a t.v. o

Taking the contributions from Aa and Ko separately, it is found that

point loci on the (c', 17') hodograph plane are composed from the two vectors:

61 [I 2  ] [12 +3(J 2 -J 1 )] B2 T2 Aai.v. , (17a)

and

62 2rI ')] B2J 1Ko. (17b)

These equations can be recast as the following matrices:

Ssin(P cosp A
=2 , (18a)

61~1 2 costp -2 sin p A2

and

2 3 1 (18b)
622' 2 _1 0 K2

Here one sees that Eqs. (18) represent; (1), a -(2:1) ellipse (6l); and (2), a fixed

point locus (62). A combining of the vectors ( 2 +1 (p)) would describe the (2:1)

12



ellipse but with its geometric center shifted to the position (o2). A sketch of

this geometry and its construction is found on Fig. 5. below (note curve "I").

1I.2 The Non-Secular Case. It was mentioned earlier that the secular

character of this problem could be eliminated by setting the constant coefficient,

K1 , to zero. When this condition is imposed on the hodograph equations then

(in place of Eqs. (18)) one finds:

- 2 (19a)
7I17' 2 costp -2sinp A

and

S3 _ (19b)
627 -1 0 K2 - 0

where the constants A (1 ) , A2 are those described in Eq. (7).
1 2

It is apparent that for this hodograph trace (6l) is, again, a (2:1) ellipse,

however, it has its geometric center located at the coordinate origin, (62 = 0) .

The major dimensions of the figure are proportional to the magnitude of the

present initial value matrix (Aa).

A sketch of this hodograph also appears on Fig. 5, (note curve 'I").

S-(9) P(P)

-L

, \

FIG. 5. Sketch of the hodograph for a general Initial-Value Problem (1), and for
the non-secular case (II). Note the general trace loci are described by

(1 +6 2); and, that for the non-secular case 62 = 0. Motion over both
traces occurs at a rate, .

13



III.3 The Zero-Initial State Case. The hodograph to be described next is due

solely to the applied specific force 7 T (75, 7 , 7 ). Here the initial state is

set to zero,again. A physical interpretation for this problem could be that of a

mass particle being propelled from a spacecraft by a fixed, continuous thrusting

action.

The analytical solution for this case is given by:

12 ) [ 2 +3(J 2 J 1)B 2T2 (")[Aa+ 7 7 T; (20)

wherein

[A =1 J 21-J2 , (21a)

and

[[ = [2B2 +3J2 (p] (21b)*

When these expressions are recast into matrix form and allowed to represent

vector components (one due to Aa , and two arising from T') it can be shown

that: [1 3 [sing cosp (22a)-l (22a)

61 L2 cos(p -2 sinp -27

2 0 2- 7
(22b)

a2 '  -2 0 77

and

V (' 0 0 7
- (22c)

L63 0 -3p L7

Here one sees the three vectors which describe all trace points for the

(', 7')-hodograph. The first vector's loci (61) define a (2:1) ellipse whose dimen-

sions are proportional to + 472  . The second vector (82) locates a fixed

point, while the third (63) represents a moving point - one which moves parallel

to the 17'-axis at a rate proportional to 7

*See SELECTED EQUATIONS for the scalar form of this expression.

14



To describe a representative point on the hodograph by the (vector)

sum 6 + 1 + 63' the construction sketched onto Fig. 6 is appropriate to

this case. On the sketch "O" is the initial locus (the origin) while P((p) is a

general hodograph point.

____3 
P(p)

3

bine to define trace points, P(tp).

III.4 Special Cases. As a first special case, for this hodograph construction,

suppose that 7 0. The consequence of this condition is that the loci (61) des-

cribe a (2:1) ellipse, again; however, this one is defined by the quadric express-

ion:

15



6 (Y 2 61l'2(' +( 2-1 =1. (23a)
7 \27

In a like manner the fixed vector locus (62) above reduces to the simple

relation:

62'= - 2T (23b)

Finally, for this case, the component vector ( 3) is reduced to a null vector;

thus, the construction can be represented by the sketch on Fig. 7. That is, the

loci here are located on the (2:1) ellipse with the originating point at the coordinate

origin (point "O"). Note that the ellipse has its center shifted to the position de-

fined by the fixed vector (2), Eq. (23b).

P(p)

0 62 --7)' O -

FIG. 7. A typical "special" Zero Initial State Hodograph.

This in-plane trace is for 7T = 0.

The second special case is a direct consequence of the imposed condi-

tion, 7 = 0. When this constraint is applied the ellipse (61), described in Eq.

(22a), it becomes a new (2:1) ellipse, defined by:

16



6247 = 1. (24a)

Similarily, the vector 62, from Eq. (22b), is replaced by:

62 0 2 0

note that here the line vector (83) is retained and is apparent to the hodograph's

description; however, now it parallels the '-axis.

The trace which is found here can be described as a "moving (2:1) ellipse",

which has its geometric center shifted (by 62), and whose peripherial loci are

additively displaced (parallel to the 7'-axis) by the vector, -3 . (This geometry

is not reproduced by sketch, here, since it is basically the same as that developed

from Eqs. (22). It should be evident that this figure is akin to the cycloid).

In the continuation of these construction descriptions, the next few para-

graphs will outline the vector compositions for traces in the inertial frame of

reference.

17



IV. DISPLACEMENTS IN THE INERTIAL FRAME OF REFERENCE

In the foregoing paragraphs the discussions on displacement and velocity

traces were referred to a rotating frame of reference. In the next few paragraphs

similar constructions and discussions for traces in an inertial frame of reference

will be undertaken.

For these next studies the sequence of cases to be examined will be the

same as those used prev iously. In this fashion a direct comparison of the various

traces can be made. Such a procedure should enhance the reader's understanding

and knowledge of these relative motion situations.

IV. 1 The Initial Values Problem. Recalling that for this case the external force

system is set to zero then the motion traces are determined from the initial state

alone.

The analytical solution which describes these in-plane displacements is:

I _)=[ 1 J)+T((. 3IBi (25)
2 2 1 2( 1 a 1i.. I 2 - 2 1K%

wherein the coefficient matrices (A, K) are defined by:

A I. 2 1 R + (J 1 )-2J) B 2 , (26)*

and

K (2J- J ) o- 2B ' . (27)*
0 1 2 o 2o

For the purpose of describing these particular motion traces the matrix

constants (A, K) will be symbolically separated to conform with the general no-

tation in use here. That is, the coefficients will be represented as:

[A ai.v. A (A1 , A2 ), (26b)

and

Ko0  K (K 1 , K2 ); (27b)

*See SELECTED EQUATIONS for a matrix definition of this quantity.
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where it can be shown that:

S, [A,] -J, [ - o2B ' J K -B R ],
I a Ii. v. 2 1 o 2 o1 21 2 0 2 o

I

A 'j J +B '
22 2 -2o 2 oJ'

K J1 Ko = 2J o-B2

and
K 2 = -J 2  +2B Al 1. (28)

The grouping of terms in Eq. (25) suggests that these in-plane displace-

ments may be constructed from the four vectors seen there. Of these, one will

describe a fixed locus while the others are all functionally dependent on the in-

dependent variable (sp).

Separating terms so that the matrices (A, K) are treated individually then

the following component vectors are defined: First, for A :a-

wherein

-[ : ] (29b)
1 H (() 0 3 A 2

and

6 (2 V () cos2p -sin2p A
I (29c)

62H (p) sin 2p cos 2p A2

Similarily, the partial solutions involving K lead to the matrix com-

ponents:

[ 63 1(P) cosp -sinp K

H (p) sing cosp K (29d)

and
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[ 3 -sin 0 K1 (29e)

64H (p) cosp 0 K2 (

After studying these matrix expressions it is seen that:

(1) The vector in Eq. (29b) locates a point in the displacement plane,

while the vector loci from Eq. (29c) describe a circle, with radius A2 +A2
12

[Aa]i. v. This circle has a double orbit frequency for its description.

(2) The loci defined from Eq. (29d) describe a second circle, but one

whose radius is IKoi . This figure has a frequency matching that of the base

orbit, (S ).

(3) The last expression can be recognized as an archimedian spiral, for

the trace figure.

The consequence drawn from these observations is that the full in-plane

trace, for this motion (on the (-, H)-plane), is composed as the sum of these four

vectors. In retrospect, it is known that the dominant characteristic for this

trace is the spiral; hence, as a general classification, the geometry can be re-

ferred to as "spiral-like". A sketch depicting this construction is found on Fig.

8 below (this figure is only approximate in its scaling).

FIG. 8. Inertial plane trace
P(P) initial construction for an Initial Values

, 0O direction Problem. A typical point P((P) is
H " ( on spiral located by the vector sum of: 61

ol (a fixed locus), plus 32, 3 and

Si34 (all cP dependent). Vectors 62
SI and 33 describe circles; 54

53 traces an archimedian spiral.

I 20
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On the sketch "O:' and "P" represent the initial and a general locus,

respectively. The circles shown there depict loci for the vectors 2 and 83;

the arcs drawn on each are representative of the segments traversed for these

partial constructions. Lastly the 64 -component vector is indicative of the con-

tribution provided by the spiral, to the final point locus, (P).

IV. 2 The Non-Secular Initial Values Problem. The condition to be imposed

(next) is that which will remove the divergent nature of the displacement trace.

From Eqs. (29) it is apparent that this is accomplished when the scalar K, = 0.

Necessarily the implication of such a constraint is felt elsewhere in the solution

(see Eq. (28)). Also, the means by which this condition (K1 = 0) occurs has an

added ramification. (Note that when K1 is zero, then either: (1), J1R = J B R'
1 o 1 2 0

or, (2) J = J B R' = 0).
lo 12 0

For illustration purposes, here, it will be assumed that K1 = 0 without

any specification of which constraint is implied regarding the initial values.. In

this regard the coefficient scalars (A, K) are now altered as follows:

1 1
1 2 1 B2o' 2 2 2 1o 1 , K1 2 2 Lo 'AoJ

Next, rewriting Eqs. (29) to reflect these constraints, one finds that the

trace component vectors are modified to read:

S, (30a)

61H (<) 0 3 A2

6 (9 cos 2p -sin2p A(1)
ffi(30b)

62H (9) sin 20 cos 2p A 2
and

S63(50) cosp -sincp 0SC (30c)
6 H(p) sin cosp K

with 6 = 0, necessarily.
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The graphical interpretation of these vector expressions remains the

same as previously; that is, 61 defines a fixed point locus, while 62 and 63

each describe circles -- 62 having double frequency, but 83 retains its single

frequency in trace motion. Of course, the size of these geometric figures will

be altered due to the removal of the scalar K1 . Combining the vectors S1

and 6 it is seen that these produce loci generated from a double circulating
2

trace vector, not originating from the origin. Adding to this the vector 63 it

is found that the final trace geometry is a limacon. In order to illustrate this

study case more clearly, a sketch is provided on Fig. 9. This shows the appro-

priate constructions.

On Fig. 9 one can see a slight asymmetry, in the trace geometry, about

the H-axis. After examining the governing expressions for this particular case

it is found that when the speed component H' 0 this asymmetry is removed.
O

/ I

FIG. 9. In-plane displacement construction for a typical non-secular Initial-
Values Problem, referred to an inertially oriented frame of reference.
The figure is a linacon, developed from two circles (62, 63). Solid
arcs, on circles, correspond to the solid arc on the limacon (arc 0 to P).
Position vector 61 locates a fixed point on the plane.
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IV. 3 The Zero Initial Value Problem. In this case the initial state conditions

are set to zero and the motion is developed solely from the influence of the

applied force system. The specific forces here are those having fixed components

in the directions of the rotating axes; i.e., 7' 7 (r , ' ?, ).

For the discussion of these in-plane motion traces an appropriate analytical

expression to be manipulated is:

I 2 P) [3(J 2  1)+T2 (2() [A ]rT+T 2 ( L '; (31)

wherein

[Aa 1 - J2 J, (32)

and

Sa [Jl+4JJ[2 2B[ 2  2]. 2(33r

As with earlier studies this trace vector will be constructed from the several

vector components arising from the matrix coefficients (A, XP). The most

obvious selection for these vectors requires five components -- two and three,

respectively, associated with the coefficient matrices (A, T). Note that in this

total there is one fixed vector; all others are dependent on the position variable

(,).

Expressing these vectors in matrix form one finds:

[61-() -1 0 A -3 0 1[ r
= 3 = , (34a)

H(p) 0 1 A 02 0 3

6L P) cos 2 -sin 21 [T

2 2I (34b)

6 H(() sin 20 cos 20 -7

635() Fcos p -4 sin 73
- ' (34c).

6 H(P) sing 4cosp 7

*A matrix definition is found in the SELECTED EQUATIONS listing.
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6 4() sin(p cosp (34d)

64H(p) -cos p sin .7

and

6 (O) 2 0 sincp 7
52 3:y : (34e)
65H (p) 0 -cosP 7

The first vector (8l) describes a fixed locus, while the vector, 62, re-

presents a circle having double orbital frequency. The third component vector

(6 ) also represents a circle; however, this one has a single frequency of motion.

Also, it has a radius= + (4) . The last two vectors (6 and 65) contribute

the secular effect found for this (analytical) trace description. Since both T-terms

contribute to the trace's divergent character, it is obvious that there is no simple

means (other than nulling the force system) by which this effect can be removed.

(For reference purposes, 64 describes an archimedian spiral while 85 des-

cribes "spiral-like" loci on the plane of motion).

Since the two spirals will quickly dominate the motion's trace, then it is

appropriate to classify this total geometry as "spiral-like".

Because the construction for this trace would be rather cluttered it is felt

that little can be gained by attempting to develop this complicated figure from

its several components. Accordingly, a sketch of the construction is not included.

Since the specific force component, 7 r, has the greater secular influence

on this trace it is informative to examine the situation when 7r 0. This

specialization removes the last vector component (5); but, additionally, the

other components are affected. In general, the other loci are not changed, geo-

metrically, even though the magnitude of the various influences may be altered.

The general trace still will have a divergent character; this is brought out by the

archimedian spiral ( 4). The other vectors will most likely produce a figure

which would appear as a limacon (this is developed from 51, 62 and 6 3).
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If one compares this problem with its counterpart, appearing on the

local-rotating-frame of reference, it is evident that the present situation is

(geometrically) more complicated. A review of all trace geometries described

in this frame of reference will quickly point to the fact that, basically, these

traces lead to spiral-like figures while those found in the "rotating frame"

would likely be of a more varied geometry. What is most important here, as

seen from the several examples studied so far, is the unusual nature of the

traces, and the inherent difficulty one would have in attempting to "guess" these

shapes, a priori.

Continuing with the pattern established earlier, the hodograph traces

corresponding to the displacement diagrams,above, are to be determined and

discussed next. These are found in the paragraphs to follow.
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V. THE HODOGRAPH IN THE INERTIAL FRAME OF REFERENCE

In a discussion of hodograph traces for the inertial frame of reference,

as these are determined from an analytical solution to this relative motion pro-

blem, the in-plane traces will be examined first. In keeping with the philosophy

established earlier, the Initial Values Problems will be separated from the

"thrusting" case and each studied independently. However, these two situations

must be recognized to be additive so that the complete evaluations, involving all

contributions, may be obtained simply by summing results.

V.1. The Initial Values Problem. The expression from which the hodograph

traces are drawn is:

I 9t(2)=B 4 2T A T -- TP-) rBJlK , (35a)
i2()= B2 (20-) Aa i.v. 2 ( 2- 2-2 2 1 p o 2 2-)B2 1 Koi,  (35a)

where the coefficient matrices (A, K) are those defined in Eqs. (26) and (27). As

in the discussions on displacement traces, these coefficients are expressed in

terms of their scalars (A., Ki), obtained by matrix multiplication. As a conse-

quence the trace geometries are developed from three vector components --

one involving A , and two obtained from the matrix, K . (See Eqs. (28) for a

description of the scalars A i, K.).

Forming the three vectors noted above, then as matrices, define:

(E'(p) -sin2( -cos2P1 A
1 = 2 (35b)

1H '(9) cos2p -sin2p A 2

62 (P) 2sinP -cos p K

2H'() cosp -sin K2

and

6 'p) cos0 sinP 1 K 35d)

6 H'(() 2 sinP -cospJ 0
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Geometrically these vectors describe: (1),a circle (61) whose radius is

A2 2 2 (the magnitude of iA a  i.v. ); note that this trace has double orbital

frequency. The second vector (2), (2 ) is also a circle, but this one has a fre-

quency of motion matching that of the base orbit; and, its radius is K1 2+K2

Lastly, the loci described from 63 form an archimedian spiral whose constant

of proportionality is (3/2) K1 . Obviously, as the trace progresses (in time) this

last characteristic will play the dominant role; hence, (again) a general classi-

fication for this hodograph would be "spiral-like".

As an aid to understanding the composition for these loci (P), on the hodo-

graph plane, a sketch (typical of this case) has been prepared (see Fig. 10).

There, several points are described using the appropriate vectors (3 ). The

purpose in detailing this construction is to give more explicit diagramming infor-

mation regarding the makeup of each locus.

V. 2 The Non-Secular Initial Values Problem. The elimination of secular

effects for this part of the relative motion, and in particular on the hodograph,

can be achieved by setting K1 = 0. When this is done the spiral (63) disappears

and the subsequent trace, on the (_', H')-plane, is formed from the component

vectors 6 and 6 . Actually, the elimination of K has more of an influence
1 2 1

than what is explicitly seen. There is an added implied effect since the matrix

A is related to K directly,(see Eq. (28)). The consequence of this action is
a 01
aI  °I

such that the relationship between the scalars (Ai , Ki ) and the state variables is

(for the non-secular traces):

1 1
A1 H', A = 1(H + ) , K = 0, K - (H +2'). (36)

12o 2 2 oo 1 2 0 o

With these reductions in hand the component vectors (Eq. (35)) reduce

to the following set:
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9 ,(/,2 
TRACE

H'

P(o)

i 3(0) direction

FIG. 10. A typical construction of the hodograph (~, i') for an Initial-
Values Problem. Each point (P) is located by an appropriate
sum of the position vectors (6 ). For convenience, this trace
has been sketched assuming positive valued scalars (Ai, Ki).
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6 -sin2p -cos2p H'
0, (37a)

6 Hf cos 2p -sin 2p I + V'

and 6 [sin, -cos ] [ 0
2 , [ (37b)

6 H' -- cosp -sing -(H +2 ')
2 2 0 o

with (necessarily) 6 = 0.

As noted above these expressions describe two circles -- one with double orbit

frequency (6), and one with single orbit frequency (for their trace motion).

Typically, the trace generated by these vectors describes a limacon. It should

be mentioned that when H' = 0, the limacon is symmetric about the 5 '-axis
0

(see Figs. 11). However, if the motion is so restricted that R = 0 and
O

' ' (:' 0, 0) then the limacon assumes the form of a cardioid (see Fig. 11(a)).

As an aid in clarifying this construction, a limacon is developed,using the vectors

(1 2) ,on Fig. 11(b). There the point "O" locates the initial position for the

trace; this is described by 61(0) + 62(0). Corresponding to the initial positions,

01 defines the point, 61(0), and the vector connecting O to 0 1 would be 62(0).

The several tic marks on the various curves are to indicate corresponding op-
positions on each component trace. Also these same marks will imply a direction

of.traversealong each arc.

V. 3 The Zero-Initial State Case. The hodograph equation referred to the

inertial frame of reference for this situation is given as:

I2 R(ep)=B 2 2T 2 (2()[A +T p [2I]T (p) 77 , (38)

wherein the coefficient matrices are:

a I T2 21'2

I 1+4J2 - ( [2B2 + 2 ?
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0

S '(a) (

FIG. la. The hodograph ( ', H') for a typical non-secular Initial-Values

Problem. Curve (a), the symmetric limacon, is due to the con-

straint, H' = 0; curve (b) occurs when E' is the only initial state
0 0

value acting. Note: 0 is origin for curve (a), while O' is for
curve (b); scaling is not consistent for the two curves.
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initial
direction

for 62 3I -

/'2 /"
0

H'

1 /

:. i. 'o- -- '
Initial direction for i1

FIG. 11b. Typical construction for a general locus (P) on the non-secular
Initial-Values Problem Hodograph. These loci are defined by
(1 +2), where 6~ describes the circle of double orbit frequency;
52 defines points on the one of single orbit frequency. Initial
position (01) is for the circle (i1); point 0 is the originating
locus for the trace; 0 is described by (1 (0) + 2 (0)).
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and

,-=E _ 2B 2 +3J2 ]. (39)*

Reviewing the overall composition of Eq. (38), it is seen that the more

expedient means to describe the trace ( ', H') is in terms of four vectors. The

separation for these vectors is such that each one is homogenous in the variable,

cp. As a consequence, one vector will involve the coefficient Aa alone. Then,
aI

from 'I' and I , there will be vectors involving powers of 9 (from the zeroth
T T

through the second). These vectors are defined as follows: first,

61 2(P) 2B2 T2 (2P-) [A. . (40a)

This can be rewritten as the matrix equation:

6 '((p) [-sin2P -cos2p A1 (40b)= 2 J (40b)
6H'(p) cos2p -sin2p A2

wherein A , A - 7 , and A A (A A
1 2( 2 = - t7 [Aa 1- a 1 1 2

Next, the vector for g 0 is described. It is:

6 2 [2' -T 2 (P-) B2 (J 1 +4J2) -2B 2 12 1

= T 2 (C-)B2 (2J 2 -J 1 ) ';

or, as a matrix expression:

[6 '(p) singp -2 cosp 71
2 (40c)

62H'() -cos -2sing

The first order secular terms appear in the equation:

3 [2(] -T 2 (- )] [2B 3 J 2  2(p ) (2J 1 J 2) P]

*A matrix form of the equation is found in the SELECTED EQUATIONS listing.
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which is alternately expressed by:K '(p) 1 2cos sinp siTn13 p . (40d)
63H'(p) 2 sinq -cosp JT

Finally, the expression involving p2 is noted to be:

34 2 2 T
or

64 '(). sinO cos€ 0

6 4H'(p) 2 -cosp sinP 77 (40e)

In these four equations one finds two circles and two spirals. The first

expression, Eq. (40b) describes a circle of double orbit frequency, having a

radius equal to twice the magnitude of [Aai ]T The second circle, acquired from

6 , has single frequency and a radius of. 2 + (27 ) 2 . The third equation (63

describes an archimedian spiral (r = kg), whose coefficient, k (2Tr ) +7
Lastly, Eq. (40c) is recognized to be a spiral-like curve symbolically expressed

2 3
as r =k( 2 . Here the constant is seen to be, k = .

It is evident that the spiral-like contributions to this total trace will

quickly dominate the geometry; hence, the curve is obviously classified as

"spiral-like".

The component makeup here is somewhat confusing to see in its construction;

therefore, the component composition will not be illustrated below. Instead the

sketch of a typical trace is given on Fig. 12. As an aid to the visualization of

this construction the initial directions for the component vectors (3 ) are indicated

below. There the parathetic zero infers p = 0; this describes an initial position

referred to the base orbit.

Initial directions are obtained from Eqs. (40), these are:
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FIG. 12. A schematic of the trace for a typical Zero-Initial-
Values Problem. This is for the specific force
vector T(T, T ).
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61(0)= (2 7 ); 62(0) = (-27 , -T ); 63(0)c (27, -77);

and

84- (3 , O .0(40f)

As an added aid to the construction description, the "vectors" at p = 27T

are defined as follows:

1 (27)= (2T7 , 71); (27r) = (-27 , -T5); 83(2T)= (41T7 , -2TT );

and

84(2) = (672T7, 0). (40g)

Note, also, that the elimination of 7t would cause the trace to be ob-

tained as a three vector sum for the construction of each point locus. Here the

loci would be given from the two circles and the archimedian spiral; consequently

this curve is akin to an involute of a circle.

The completes the description(s) for both the initial values problem and

the case of a disturbing force system aligned with the rotating frame of reference.

Yet to be analyzed is that case where the force system is assumed to be parallel

to the inertial frame of reference. The descriptions for that system will be the

subject for study in the next paragraphs.
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VI. THE INERTIALLY ALIGNED FORCE SYSTEM

The hodograph and displacement traces to be analyzed here are the con-

sequence of an inertial aligned force system. That is, the specific applied

force will be assumed to have fixed components parallel to an inertial frame of

reference directions. Of course, the traces will be described in both the

inertial and the "local rotating" frames of reference, as before.

It is not necessary here to redefine the initial values problem (T = 0; and

6 1 o # 0) since that solution is independent of any such force system applied;

and, too, that solution has been examined earlier.

Therefore, in these paragraphs the traces are developed as a response

to the particular force system applied. Following the pattern established

earlier, traces in the local rotating frame will be examined first; then analogous

cases for the inertially aligned frame will follow.
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VII. DISPLACEMENTS FOR THE ROTATING FRAME OF REFERENCE

In keeping with the work pattern established earlier the displacement

diagrams below are those to appear on the ((, ??)-plane; that is, the plane of

motion for the reference particle.

VII. 1 The Zero Initial State Problem. An equation for in-plane displacements

referred to a local, rotating frame of reference, attached to the base particle is:

I2 2 + 23J 1 2 a i. v. 2 2 (B21) Ko I (41)

wherein [Ai.. and K are the quantities defined earlier (see Eq. (1)). The

term (4 T7r) represents the (partial) solution of interest here. This expression

analytically describes the influence of an applied force system (T7) on the dis-

placements, per se. For clarity, and for information, a mathematical des-

cription of the component terms is given below:

(1). 7I (7~, , TH ,  ); these scalars are presumed to be constants

for this analysis. Each component bears a subscript to indicate its direction,

in the inertial frame of reference.

(2). - [2J1+5J 2 ][T.(]+)-I] + 2 [J+2J][J 2  B2 + B2 T 2()]

+ 2 1 - 2 J((P 12 2 2 2 ( (4 2)

here T 2 (<p+) denotes the transformation matrices used to transform any vector

quantity from one triad of reference to another. The matrix operators (Ji, B2 12)

has been defined elsewhere and should be well known.

To a small degree the transformation operators, T 2 (p ~), as used here,

are artifical; that is, they have been employed to describe certain trigonometric

terms which came about in the mathematical analysis. This ploy has been used

also to retain uniformity in notation throughout this study.

*See SELECTED EQUATIONS for an equivalent form of this resultant.
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From Eq. (42) it appears that trace loci from that expression can be

best constructed as the sum of five component vectors (8i); each vector selected

to describe a particular geometry. It will be shown that these vectors determine:

(1), a fixed point,( 6 ); an ellipse,( 6 ); a moving (line) point,( 3); an oscillating

(line) point,( 4); and, a spiral,(6 5). Adding these vectors will obviously describe

each representative point on the in-plane displacement trace.

Now, identifying each vector mentioned above:

(1) . The fixed point (61) is described by:

61[ 2 () [ 2J1 +5J 2 (-12)

or, as a matrix expression:

S~ (43a)

61 7 0 5 TH

This locus is a fixed point expressed in terms of the in-plane components

of T1 .

(2). The elliptic loci are obtained from:

62 12 A (p [2J 1 +J 2 T 2 +) I

which is the same as:

6 2 cosP 2sino 7(

6 7 -5sing 5cosp (43b)H

and represents the (2:5) ellipse,

22+ 2 77 2= 1. (43c)
2177-+72 5 73+7

When vectors 51 and 62 are added the resulting trace is a (2:5) ellipse with its

geometric center shifted to the 6 -locus.
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(3). Next, the moving point (6 ) is acquired from:
3

3[ 2 1)] J+2J2  J2 B2j 1
or,

= L ] j 0 (43d)
This point moves parallel to the ?-axis -- its direction of motion depends on

sgn (,.), and the motion rate is 311 .

(4). The oscillating line point is a consequence of:

['. ((O ] -1 [J1-2 .] [- -,- 2 (( T + ] ,
or, in matrix form:

64( 0 - sinp 7
S 2 sin (43e)

6 4 t -sin 0 TH

This trace originates at an origin; it oscillates through that origin, and

has an amplitude of motion, max +I H)2
max 2

(5). Finally, the spiral motion, here, is obtained from:

6[I2((P)] [J2J1B T
5 2 _1J2 2 I B2 2 I .

or,

6 5 3(p -sin(P -cos9 7

657  2 [2cosp -2sing , (43f)

This describes an archimedian spiral (r = k(), but one given in terms of a

"reduced" set of coordinates; that is,
6s)2 (74)2 2

15 spiral 5 2 H H . (43g)
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(Note that this spiral exists in the (d, 2) displacement space rather than the

true displacement space (, r7)).

Due to the rather cumbersome nature of this construction, only a com-

posite (sketch) is shown below; see Fig. 13. It is evident that this trace

originates at the coordinate origin and has a radius increasing in a secular

(divergent) manner as the motion progresses.

Initial directions for each of the vectors (6i) are noted below as an aid

in visualizing the construction (an equality here is an explicit symbol; the pro-

portionality sign infers direction; each such vector is expressed in the coordinates

( , 7)). The initial vector "directions" are: 6 1(0) -(-27 , - 5 7H), which is in-

variant with p; 62(0) (2r,, 5 7H); 3 (0)oc (0, TH), a "direction" parallel to 17,

but described by sgn (TH); 4(0)a (-H/2, -'7), this is a "pointing direction"

for this vector; and, 6 5(0)c (-37H/2, 37').

At the completion of one base orbit revolution ( p 21) these component

vectors will have loci determined from the vectors (i) as: 1(277) (-27., -57 H)

the invariant locus; 62(2)= (27,, 5H); 63(2) = (0, 617); 6 4(2) - (0, 0); and

6 5(27) = (-3HT , 67T). According to this description it is very easy to locate

the point (P(27)) in the displacement plane. Actually P(27) is seen to be the locus:

P(21) (-37T , 127T7).

A general examination of these vectors (Eqs. (43)) finds a monotonic diver-

gence for the loci of this motion. Of course, this is not an unexpected result in

view of the physical interpretation of what is happening here. The interesting

aspect of all that is shown is the overall character of this motion.

VII.2, Special Cases. The special cases of interest are those where 7. and 7
.M H

are each set to zero, separately and independently. The trivial case, occurring

when both components are nulled, is not of interest since this would not produce

a displacement at all.

40



FIG. 13. A sketch of an overall typical in-plane trace for a Zero-Initial-Values Problem where the disturbance
force is TI1 TII(T H,TH, z ). The figure is not scaled, however smallest scale divisions in the
vicinity of the origin are for equal displacement increments.



When each force component is separately zeroed, the basic geometric

character for each trace is not altered even though some size reductions are

apparent. The one major alteration which does occur is the following: When

7 n0, the line vector 63 is not in evidence. However, when 7TH 0, the

vector, 63 reappears -- actually, it is the same as the vector found for the

general case.

It is not necessary to set down formulae for these special expressions

since they are easily acquired from Eqs. (43). However, to clarify the trace

geometries -- as they would occur for each special situation noted herein --

a sketch has been prepared. This is found on Fig. 14.

In the next paragraphs an examination of the corresponding hodograph

traces will be undertaken. Once again the descriptions there will be limited to

in-plane coordinates as a matter of convenience and compatibility with the prior

presentations.
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0

FIG. 14. Sketch for an in-plane, Zero-Initial-Values Problem showing the influence of 7T and TH acting separately.

Equal scale divisions imply equal displacement increments. (The numerical scaling is deleted for convenience

and generalization).



VIII. THE HODOGRAPH FOR A ROTATING FRAME OF REFERENCE

The in-plane hodographs which will be studied next are to be a consequence

of the applied force system Ti - TI(7, TH' z). This force acts on the test

particle and produces a motion which is described in the local "rotating" reference

space. The analytic expression which describes these hodographs has been devel-

oped earlier; however, that resultant obtained is:

I2k P) 2+3(J2 -J 1)]B2 2 ]K+[A i.v. 7 (44)

wherein

-[2J 1+J2 B 2T (+ 2 [J 1 +2J[J B2 +2 - B2 P) B2 2 (2()]

VIII.1 The Zero-Initial Value Problem. Equation (44) is the complete expression

for the hodograph. However, all of this equation is not to be studied now since

present interest is only in the partial solution, c' 7. In this regard, then, atten-

tion will be given to Eq. (45), primarily.

To analyze this partial solution, and to propose a construction for the hodo-

graph loci, the above expression will be examined as a four vector result. In

the work to follow it will be shown that these vectors describe: (1), a point locus

(61); (2), an ellipse ( 2); (3),an oscillating-line locus (63); and (4), an archimedian

spiral (64).

A description for each of these contributing vectors is found below:

(1) The fixed (in-plane) point locus is described by:

or,

6 (' 0 7_
1 = . (46a)S1 7 3 0 TH

*This expression appears in a matrix form, in with the SELECTED EQUATIONS.
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This vector locates a point on the 7'-axis.

(2). The ellipse is described by the vector:

62 I2 '(cp) - 2J 1+5J 2 ] l+2J 2 [B 2 2 I

which can be expressed in matrix form as:

2 2 sinp + 2 cosp

6 ' L-2 cos ( -2 sin P 7H
A manipulation of these expressions defines the (4:1) ellipse,

62(' )2+ 2 77 )2 (46c)

1 2 2 2 7 2 
14

2 H H

Obviously when 1 and 32 are combined the subsequent trace appears

as the ellipse with its center shifted by 61"

(3). The oscillating-line locus is obtained from the vector, 53; i.e.:

63[I2 '((P)] [ 1 -2J 21[B 2 2 ( )+B2T 2 P j TI
or

= 2 (46d)

8 3'771 -cos p 0 TH

This line oscillates at orbital frequency, passing through the origin each

half cycle. Its initial direction (away from the origin) is in agreement with sgn

I(T); and, the amplitude of these displacements is I3 3 max H /2)

(4). The last of these component vectors describes an archimedian spiral,

but in a transformed coordinate space. That is:

64 12 f 2 P [J1+2J21 2 ((I 4 '

or, in an expanded format;
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647 '  2 -2sinp 2cos p TH

The resultant here defines a spiral (r = kvp), expressed as:

(64 2 23 . 7+ 2 (46f)
spiral

This figure is described in the (4', 77'/2)-space; it has as the constant multiplier,
_32

k E +7

It is apparent that the divergent nature of this full trace comes about through

the vector, 64. Also, it is obvious that this influence cannot be removed unless the

complete (in-plane) force is eliminated. Of course, to do so would produce a rather

trivial result.

When the four vector system is coupled, by means of vector addition, then

the complete hodograph trace (4', 771) is acquired. As an illustration of this the

plot on Fig. (15) is presented below. There, in its general appearance, the sketch

appears as "spiral-like". This illustrates that the spiral, or secular nature, of

the solution quickly dominates this geometry.

VIII. 2 Special Cases. The special cases to be discussed here correspond to those

situations described in the "displacements" section above. There, the two i cases

considered were those where the force component scalars were zeroed separately

and independently. These are the situations to be discussed below.

Setting either of the scalar force components to zero does not significantly

alter the geometric character of any one of the component arcs. That is, the

oscillating line trace remains a line; the ellipse retains its shape, and, so do

the spirals. The main notable change occurs when r - 0; then, the fixed locus

vanishes (i.e., 61= 0). This does not occur when 7 = 0.
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FIG. 15. Sketch of a typical, complete hodograph, referred to a rotating frame of reference, due to
7r, and H combined.



Once again, because of the details apparent to the construction, and those

which would occur in developing the several trace components, only a composite

figure will be shown on the figure below. (See Fig. 16).

Viewing these sketches one sees that (as before) the spiral, or divergent

effect dominates the overall character of these traces. Of course to a large extent

this is to be expected because of the physical nature of this problem. The constant

applied (specific) force would necessarily cause a monotonic "growth" in the speeds

so that, in time, this should be the dominating characteristic found.

The application of this same force system to the inertially defined state

components will be studied next. In these following paragraphs displacement and

hodograph traces are determined, and their geometries described and illustrated.
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/H

FIG. 16. Sketch of typical in-plane hodographs, referred to the rotating frame of reference, as described
for T.3 and TH applied independently. Note: Scale increments are equi-valued.



IX. DISPLACEMENTS FOR THE INERTIAL FRAME OF REFERENCE

The displacement diagrams showing relative motion traces apparent to

the inertially aligned frame of reference are developed from the appropriate

analytical solution. This problem has considered a moving particle influenced

by its own initial state, but additively subjected to a force system aligned with

the inertial frame's axes. In fact this representation is analogous to the situation

examined and discussed above. For reference purposes the equation which des-

cribes this motion has been previously obtained as:

I2P) = {T 2 (2p-)+3 J 2  1]} [AaL .v. +T2 -)I 2 - p EB2 J1 K

+ T2 (()[P TI] (47)

wherein, [A]. and K are those quantities defined in Eqs. (26) and (27).

Also, the matrix expression 'Z is that described in Eq. (42), above.

Analogous to that case presented in the foregoing paragraphs the only

quantities to be studied and analyzed here are those associated with the specific

force, 7i.

X. 1 The Zero Initial Value Problem. Restricting this discussion to terms in

, then this particular partial solution is:

B6 ['2l)] T2 (p [~I]. (48)

Recalling the earlier partial solution and reviewing the matrix (D' above,

it appears that the most descriptive breakdown for this case involves six com-

ponent vectors. Each of these will be shown below in matrix format.

(1). The first vector component describes a point locus on the displace-

ment (, H) plane. That is,
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(49a)
13 TH

(2). The second partial solution defines a point moving along a line of

fixed direction. This is described by:

- = • (49b)

62 H 4 -1 0 -TH

The trace is a locus with monotonically increasing distance between the point and

the origin. Direction, per se, depends on the sgn (Ti), and the rate is related to

the magnitude of 7I .

(3). The next vector defines loci which describe a circle on the displace-

ment plane. That is,

63  -2 cos(p 5 sinip H] (49c)

63H -2 sinp -5 cosp TH

which is equivalent to the circle:

(3) 2 (3H) 2 = (2)2 + (57H). (49d)

The composite trace obtained from the sum, 6 62 and 83, would repre-

sent the circle (6 3), with a displaced center (i), whose peripheral loci are each

continually being moved according to 62.

(4). One of these partial solution vectors is described in terms of the

double frequency trigonometric functions above. This forms the positional loci:

6. -2cos 2 - sin 2p 7- 4 4(49e)

4 H -2sin2(2 + cos 2p 74 4 H

The. 64 vector traces out the circle,
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(64 )2 + (64 H) 2 (27) 2 +( 7 TH)2. (49f)

(5). The next component vector (65) describes a "spiral" situated in a

modified coordinate space. The matrix for this vector is:

6 5 -sin p 0 Ty
5 3(p (49g)

5H  L cos P 0 TH

leading to the parametric expression:
6 2 6H 21

__ + ( = 3(p , (49h)

which defines an archimedian spiral.

(6). The last vector is defined in terms of double frequency trigonometric

terms also. However, it leads to the spiral:

6 3 -sin 2p cos 29 7-

66:H 4. cos2p sin2P 
(4)H

described by the parametric expression:

(6)2 + (6H)2  ~ + 2 . (49j)

From these six vectors the first one locates a fixed point (6 1); two (53' 4)

are loci describing circles; another forms the line with "increasing" length; and,

the remaining two vectors (65 66) generate spirals. For this total, three trace

geometries show divergence while the others produce figures with bounded ampli-

tudes of motion (fixed radii). Out of this description it should be evident that the

general geometry here should be classed as "spiral-like". To the contrary, how-

ever, near the initial point these figures deviate from the more usual "smooth"

character associated with other problems of this type. (See Fig. 17).
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FIG. 17. Sketch of a (A, H) trace geometry as produced by the application of a specific force

7r, 7i(, TH). This composite figure is the combination of a six vector construction
as describedfor this Zero-Initial-Values Problem.



IX. 2 Special Cases. The only special cases of interest here would be those

where only one force component at a time is considered. These traces, for

this constrained condition, are also spirals. However, the spiral for TH

(alone) produces the more classical figure (see Fig. 18). To the contrary,

when 7~ = 0 the spiral (65) vanishes but the other geometric characteristics

are retained.
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H 0

FIG. 18. Sketch of typical graphs of the in-plane displacement loci, referred
to an inertially aligned frame of reference, as produced by the appli-
cation of , and TH, independently.
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X. THE HODOGRAPH IN THE INERTIAL FRAME OF REFERENCE

The general expression for this in-plane hodograph has been found to be:

2'( B2 2 IT2 i. V. 2(9 2 22 1-3B2 19 Ko

+ T2 p) [c 2]} T 1 ], (50)

wherein,

- 2J1  2 B 2T2 ((O) +. 1+2J2 [J2 B2 2 2-B 29) B2T 2(+)]

+ 1 -2J2 B2 [T2(-) +T () . (51)

Since the only part of this solution which is currently of interest is that

involving c and ' , then the needed descriptions will be developed accordingly.

As a consequence, the partial solutions to be analyzed here are those obtained from:

E(2h B 2[ 7 T ]T , (52)

(for definitions of 4" and i'Z see the expressions above).

X.1 The Partial Solution Due to only. Equation (52) denotes the general ex-

pression to be examined here. Following the pattern established earlier that

expression will be separated into its several (four, to be specific) sub-matrices.

Each of these will be studied, individually, to ascertain the appropriate geometry

from each. In the construction of a composite trace the several vectors would

be summed.

It is demonstrated below that the full geometry on this hodograph plane is

composed from a pair of circles and a pair of spirals. Specific descriptions for

these will be acquired in the follow ing paragraphs.

After several combinations and a rearrangement of terms the four vectors

mentioned above are:
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(1). A circle with its center located not at the coordinate origin, is

developed from:

6'(P) 1 13 sin 2p -(9 + 11 cos 2p) 7-
= . (53a)

6 H'(p) (9-13 cos 2) -11 sin 2p TH

The quadric expression for this figure is found to be:

.9 2+ 1 9 2 13 2 11 7 )2.
1 4 H 1 4 = 4H (53b)

It is evident that the above expression is composed of two (2) vectors:
9 9

one, a constant defining the fixed locus (- 4 + 4 T); and, a second vector

locating points on the circle of radius -13 r. +11 rH )

This geometry has a motion frequency which is twice that of the orbital frequency;

and, the direction of motion is the same as that for the base orbit.

(2). Next, there is a circle of single orbit frequency described from:

6 2 -sinp 5cospo 7 L (53c)
62H' L cosp 5 sincp TH

This matrix leads to the parametric equation:

(62(')2 2H')2 = [ + (5H 2 ] . (53d)

(3). The secular influence here provides a pair of archimedian spirals.

One of these geometries is:

6 r' -cosp 0
= 3P ; (53e)

3 Ht -sinp 0 7

or, in parametric form:

(6 5)2 + (3H)2 (37.)2 P2. (53f)
3 57
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This spiral (r = a), has its constant (k) defined in terms of 7_ alone (k 3%).

Also, it has a "turning rate" equal to that of the base orbit.

(4). However, the second spiral has a double frequency; it is described

in the matrix equation:L6 V ' -cos 2(p -sin 2( 7
4 -. (53g)

64HI 2 -sin2p cos2p H

The archimedian spiral from the above equation can be represented by the

quadric:

(64' ,2 2 ( 4H')2 ( (2 (+ rH2). (53h)

It is noted that the complete hodograph is acquired as the sum of these

four vectors (Eqs. (53)). In order to illustrate this addition, a sketch, shown

on Fig. 19, has been prepared. There, the initial vectors, 6i(0), and a repre-

sentative set (3i) are included to illustrate typical loci. In addition, Fig. 20

has been included here to show a typical trace for the fixed specific force com-

ponents (T., TH).

X.2 Special Cases. The special situations worthy of consideration at this

point are those which consider only one force component (7.., TH) in each

example case.

When the TH component (of 7r1) is eliminated the trace geometry is not

significantly altered (see Fig. 21). However, when 7 - 0 the 63 vector vanishes

and that trace is significantly altered in scale and configuration. (The geometries

shown on Fig. 21 are for a total angular displacement of one complete base orbit

revolution).

It is easy to recognize what changes occur for the several component

vectors (6i) here, when each of the 7rI components is nulled. In Eqs. (53) the
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( Sol TRACE ARC

H' -I 
P

/

S(o)-direction
8(o)-i rzc ior

FIG. 19. A sketch depicting the construction for hodograph loci due to
(T-, 7 )I Here 6o is the fixed component of 61 (see Eq.
(53a)); 2 describes a circle (Eq. (53c)); while 53, 4 are
spirals (see Eqs. (53e), (53g)). The two loci shown here (O, P)
depict trace points for <p= 0 and <P= T/4, respectively.
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FIG. 20. A typical trace for the ( ', Ht) hodograph plane as produced by the

specific force components (7T, TH). This figure is for loci in the

range 0 p 21T (referred to the base, circular orbit). Direction along

the curve is as indicated; O describes the trace origin.
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I0

I H)

I-

FIG. 21. Typical traces for the hodographs produced by the 7I components
(r5, TH) applied independently. These figures correspond to a
one orbit transit of the reference particle.
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appropriate columns, in the matrices, could be replaced by zeros. Thus, the

characteristic lengths of these geometries are altered (in scale) due to the com-

ponents of 7r being removed. Also, there will be alterations in initial loci

positioning for the same reasons. A comparing of Figs. 20 and 21 will show

what variations have occurred for these implied special cases.

The remaining topic to be discussed, regarding the construction of trace

geometries, is that represented by the out-of-plane state variables. The figures

which will be formed and described, below, represents that situation; these will

be for a particle in motion under the influence of an initial state and/or a specific

force system.
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XI. OUT-OF-PLANE TRACE CONSTRUCTIONS

The general construction of trace geometries depicting out-of-plane motions

cannot be as simply described as those for the in-plane cases. The primary reason

for this is easily recognized when the reader examines the analytical, scalar equa-

tions for the appropriate state variables. On studying these expressions one finds

that the uncoupling of these motion types leaves the equations expressed in terms

of inconsistent parameters. That is, the initial state values, and/or the force

components, which appear are not apparent to both of the plane's descriptive equa-

tions. Consequently the joining together of the solution equations, as was done

for the in-plane traces, cannot be accomplished here. In fact the full range of

"state" and/or "forcing" parameters will appear in these equations; this leads to

a mathematical inhomogenity which does not accomodate the "building" of vectors

for trace loci. Since a somewhat different approach is suggested now, it will be

noted (below) that the traces are described in a slightly different manner. There,

scalar expression will be presented and these -- rather than their vector counter-

parts -- will be discussed as the means for representing motion geometries.

It will be evident, also, that the consequence of having acquired a linearized

solution is utilized. That is, the initial values problem is (again) considered

separate from the "disturbing force" case. In this regard a major simplification

is afforded; however, if the "coupled" influence of an initial state and a disturbing

force is desired, then this is easily acquired through simple addition of appropriate

coordinates for the displacements.

In order to present a complete representation of the out-of-plane displace-

ments, and their corresponding hodographs, it is necessary to describe

traces in both the local, rotating frame of reference and the inertial frame.

For each set of geometries the several cases to be examined are those for

the initial state and the applied, external force systems (T, I"1). The one

added constraint, which is introduced here, is that all such motions originate

from the origin (i.e., o, ~o 0). Needless to say this restricts the generality

of the initial state,as a disturbance, but does not affect the traces for the applied
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forces (recall that these have been examined, throughout, as the "Zero-Initial

Values Problem").

For consistency, the Initial Values Problem(s) will be described first;

then the two applied force cases will be examined and illustrated.
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XII. DISPLACEMENTS FOR THE INITIAL-VALUES PROBLEM

(a) Local, Rotating Frame of Reference. The solution for this problem

situation can be obtained from the general displacement equations:

I2h ()=1,2 +3(J2 1 )]T2 ((P-) Aa 2[I-  B2 J1]Ko+

and '(54)

J 3A ()=J 3 o cos (P+ to sinp+7 (1-cos) ;

subject to the constraints:

A =O and 7-0.0

One consequence of these restrictions is that coefficients (A, K) are reduced to:

A -A (At A ), with; A = 27 , A 2= 0 ' ;a al 2 1 o 2 o
and

(55)
K = K (K , K ),wherein; K = 27 , K -2(o.
o o 2 1 0o 2Ko

Rather than writing Eqs. (54) separately, return to Eqs. ( . 22)* and from there

_,show the matrix expansion as:

2 o
7() =2 -1 -3P 0 + cos p 2sinp 0 77' (56)

2 o

i () 0 0 0 0 0 sinP p'
2 o

The trace described on the ((, )-plane is expressed from the analytical,

scalar expressions:

((p)=277 (1-cos()+o' sinp,
0 0

and (57a)

(0)= C' sing .

Examining these equations one sees that the trace is composed as an ellipse and

a line. These result in the skewed ellipse, given by the quadric:

*This expression appears, as noted, in Reference [2]
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(- 2~ )2 +C2 1 o- 4 + - 4 2 cos 2

- 24o to sin 2c. (57b)

A sketch of these traces appears below on Fig. 22. There, the reader

will find the two component geometries and the full trace (Eq. (57b)).It should be

evident that the skewed ellipse is described by the algebraic sum of the two sets

of coordinates (4) (see Eq. (57a)).

The (77, C) trace, from Eq. (56), is developed from:

(p))=477 (sin( - ) - 2 (1-cosP)

and (58a)

C (p)= C' sinP .
0

These two equations may be interpreted as: (1), an ellipse (due to 4o' o); and

(2) an s-shaped curve (due to o', ,C). The full trace, on the (17, C) displace-

ment plane, is represented by the quadratic parametric equation:

(r+2ro + 3o )2 2 = (2) 2 + (4) 2 +C 2 ] + [(201)2 - (4o)2

(77+ 2 I+37(P)

- () 2] co s 2 + 8 o n sin 20 . (58b)

A sketch showing these two basic geometric curves and the full trace

is found on Fig. 23 below. It is of some interest to recognize that the ellipse

has its geometric center located away from the coordinate origin (at 77 =-24'0

C = 0); and, that the s-curve is developed from a slant line coupled with a

secular (or rate) component (proportional to (p).

The sketch, drawn to an arbitrary scaling, depicts a geometry where the

"size" of the ellipse and the s-curve are selected to be the same. This selection

leads to a displacement trace which closely approximates a cycloid - like geometry

-- one which would be repeated, sequentially, each orbit.
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o = 0

I

0

L --

- %_ ..o '1 --

(FIG. 23)

(FIG. 22)

FIG. 22. Sketch showing typical traces, on the ( C, ')-plane, for the Initial
Values Problem. Dashed curves are the partial solutions; the
skewed ellipse is the composite trace.

FIG. 23. Sketch, on the (7, C)-plane,describing typical traces for the Initial
Values Problem. Ellipse and s-curve are partial descriptions; the
full line curve (and dashed extension) represent the composite geo-
metry. (Solid line is for 0 0 rp 217).
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(b) The Inertial Frame of Reference. Here the problem solution is

obtained from the general analytical results:

I)= IT 2 (2P)+3(J2 -J 1 ) Aa 2  2 - B 2 1 2 1 2I} 2

and (59)

J 3 (p)=J R3{ costp+' sinp + 7 (1-cos ;

subject to the constraints:

S= 0, and 7=0 .
O

In agreement with these restrictions:

1
A1 H', A = 1 2 ' K = 2H' and K = -2'. (60)

1 o 22o 1 o 2 o

Expressed in matrix form the displacements are given by:*

S(8) sinp coso+ 2 sin p 0 - ( (- 3 + co s 2 )  o2 4

H(P) = 2 -coscp sincp- cos' 0 + 1 (3+cos2() sin20 o (61)
2 4 2

sin Z
Z() 0 0 0 0 0 2 n

The traces appearing on both displacement planes are seen to have secular

characteristics; and, both have contributing geometries which possess single and

double orbit frequency. The rather complicated form of the scalar expressions

describing these figures makes it difficult to ascribe names to each. Consequently,

the sketch found on Fig. 24 will show contributions due to the individual speed com-

ponents, and the full trace geometry (a summation of coordinates).

From these sketches, drawn for one orbital passage ( pa 2r1),it is found

that the only closed geometry is that due to ' ; and,on both displacement planes.
0

If one would recall, this corresponds to the condition required to eliminate secular

effects; i.e., H' - 0. This same conditioning is brought out here in these trace com-
o

ponent geometries.

*Instead of listing solution types separately, as in Eqs. (59), the operator

(Eq. ( .13a), Ref. [2]) was applied to Eq. (56).
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Note: Smallest divisions in vicinity H
of origin, for both scales, define
equal coordinate increments.

o0,-z 0.- .z-2 - ----

0 =0 0 =0
o o

FIG. 24. Sketch of out-of-plane traces developed for the Initial-Values Problem
in the inertially aligned frame of reference. Dotted curves are for Z'
alone; solid arcs are for both speeds.
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XIII. HODOGRAPHS FOR THE INITIAL VALUES PROBLEM

(a) Local, Rotating Frame of Reference. The hodograph equations

are acquired from the general expressions:

I2. ?(P)= L[2 + 3(J2 )]B 2T 2 (-)Aa - 2 J1 Ko +' '

and (62)

Jk l()=J 3{Zo cosP-O sino+Tsinp};

wherein the constant coefficients (A, K) are those given in Eqs. (55). The hodograph

equations for this problem may be obtained from (say) Eq. (56) as:

(P) 0 0 0 2cos sing 0

'((P) 2 0 - 0 + -sin(P 2cosp 0 7' (63a)

Scos 0
/ ' (0) 0 0 0 0 0

2 J) L oJ
The two out-of-plane traces formed by these expressions are found to be

skewed ellipses; the quadrics describing them are:

(1) in the (', ')-plane:

,2 +c2= 1 o2 +4to12 ?2]+ o2 '_4i2 +2] cos 2 +2oo sin2p; (63b)
2  002

and, (2) in the (17', C')-plane:

(7'+3o)f2 ,2 1 +1[ 6 2 + - 4 ,216 1 2  2 cos2pj-8(oosin2p. (63c)

Both of these skewed ellipses are noted to be formed from a symmetric ellipse

coupled with a slant line.

Because of the geometric similarity which is found here, the two hodo-

graphs may be represented by the single sketch found on Fig. 25. There, the

directions of traverse, over the trace, will be different (position valued para-

meters have been assumed). Also, the scale of these two geometries would be

different.
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1 I

I//1

I I

O

FIG. 25. Typical trace construction on the ((', P')-plane, for an Initial-
Values Problem with 7 = Jo = 0. The broken curves are for
partial solutions; the full curve is the composite geometry.
Note: A similar geometry is achieved on the (rl', C')-plane,
however directions are reversed (as shown) and sizes could
be altered.
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Here, too, the skewed ellipse is recognized to be developed by summing

coordinates used to describe the simple ellipse and the slant line (for both re-

presentations).

(b) Hodographs in the Inertial Frame of Reference. The general analyti-

cal results for this problem type have been acquired as:

I2 R'(p)=B 2  T2T2 (2g-)] Aa + T )[ 2 - 2- 1) Ko0 +, 7

+T 2 B2 J 1 Ko J

and (64)

3 A'p)=J g cosgp-R sinp.+Tsing .

The constants which apply for the present case are those given by Eqs. (60). For

reference purposes, the scalar expressions for these out-of-plane hodographs

are obtained as:

'(P) cos p 2 (sin(P+3P cosP) 0

H'P) = 2 sing (-cosc+3psing) 0

Z'(p) 0 0 0

- os 2p -s in 20  0
2 o (65)*

sin 2ii
+ 2 cos 250 0

cos z
0 0 Z'

These equations imply a general divergence for planar traces. This is

noted (again) to be associated with the input parameter Ho , and, as seen on the

figure below, the geometry contributed by V' is a "closed" one (see Fig. 26).

Unfortunately these traces are rather complicated and do not lend themselves

to simple name descriptions. (Note that each figure shows the component traces

and the final hodograph geometry).

*This equation is also obtained by differentiating Eq. (61).
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H'

I

..=0A

\zt# J- - -

I I

O iO

FIG. 26. Typical trace sketches, referred to the inertially aligned frame,
for the Initial-Values Problem, with 7 = go = 0. Dotted curves
are figures for - I alone; dash arcs are for Ho alone; solid curves

are composite bodograph traces.
Note: Smallest scale divisions in vicinity of origin are for equal

coordinate increments.
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In the following sections the zero-initial-value problems will be dis-

cussed. There, cases for the two disturbances (T and r ) will be developed

separately; and, the displacement and hodograph geometries will be described

in the two frames of reference.
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XIV. ZERO INITIAL VALUE PROBLEMS

(a) Local, Rotating Frame of Reference. The solution type to be des-

cribed here is contained in the general equations denoted as Eqs. (54). The

difference between this case and that described in Section XII is that now the dis-

turbance is 7 (, , , ), rather than the Initial State. However, a direct

development for the displacement matrix equation is obtained from Eq. ( .22a),

Reference [2], as:
1 -cosp

(2) 2 0 0 0 1 0 2 in p 0

0(p) =2 0 2 0 +p -1 0 - -sin(P 2cosp 0 T (66a)

0 0 0 0 0 COS "

L 2 Jj L C
Now, the trace geometry found on the ( , C)-plane is obtained as the com-

bination of a cycloid (due to 7 ) plus a slant line (from 7 ). Choosing these T7 -

components to be positive valued the two contributing geometries, and the acquired

total trace, could appear as shown by the sketches found on Fig. 27. Incidentally

a quadratic form of the descriptive parametric equation for the full trace is found

to be:

( +27 p) 2 2= 7 +47 [ 2+ ] + [T -4 +T ]cos 2p

+ 27 7 sin 2p . (66b)

Looking at the full trace it seems reasonable to refer to it as a skewed cycloid.

In an analogous manner the trace appearing on the (77, C)-plane could be

described as an accelerating s-shaped curve. It is developed from a cycloid

(provided by T7) and a modified form of the s-curve (due to 7 ). These component

traces* are found on Fig. 28, along with the combination geometry shown there.

Incidentally, the quadric expression for this full trace can be written as:

*The traces found on this figure are drawn for positive valued 'i components.
The reader can easily ascertain the consequence of changing the sign for the
I7 components. A change in magnitude is not as readily visualized.
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FIG. 27, 28. Typical trace geometries developed for a Zero Initial-Values

Problem (. =4 ' = 0). Disturbance provided by specific force

components Of . oSolid curves are composite traces; broken arcs

are for partial solutions.
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[-47,(1- -)+27y o][+- =7 = 47 +167r +7 ]

4 T-167 -7 cos2 2 87 7 sin2p . (66c)

Again, it should be evident that the total displacement trace is composed as a sim-

mation of the component geometry coordinates. The transfer of this geometry to

the inertial frame is discussed in the next sub-section.

(b) The Inertial Frame of Reference. A mathematical description of

these out-of-plane traces was noted as Eqs. (59). However, for the specialization

implied here the only coefficients of consequence are those proportional to the

specific force T(7r , 7r' , ).

As a matter of record the scalar expressions which evolve for this case

study are:

S(p) + =T ( cos 2 P+cosP+2sinP )+7 in2p+2pcosp-4sinp+ 3 sin ) ,

2
H(p)+37 =r sin2p+sinp-2pcosp +r cos20+2PsinP+4cosP- cosP

and

Z(p) =  (1 - cos p ). (67)

Forming graphs from these expressions, a set of representative traces are

found on Figs. (29, 30)*. There the two component geometries, and the full com-

bination figure,are the results for positive values of the 7 . It should be evident

that all component sketches suggest a divergence; the (., Z)-plane curves appear

to close, however this is a consequence of the mathematical solution form only.

Once again the mathematical complexity of these expressions negates the

possibility of affixing simple names to the corresponding geometric figures. For

this reason only typical traces are displayed; no attempt has been made to separate

the full analytical expressions into simpler component forms for graphic description.

*The traces, as shown, are for only one orbit of motion; i.e., AP2! 2r.
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FIG. 29. Typical out-of-plane trace geometries developed for a Zero Initial-

Values Problem. Note that individual (Ti 7T) influences are shown

as well as the composite figure (L).
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FIG. 30. Typical out-of-plane trace geometries developed by a Zero Initial-
Values Problem. Note that individual (Ti, T) traces are shown as
well as the composite figure (t).
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XV. HODOGRAPHS FOR THE ZERO-INITIAL VALUES PROBLEM

(a) Local, Rotating Frame of Reference. The general hodograph equa-

tions for this case are expressed in Eqs. (62); however, these specific expressions

require that all input parameters except the 7. be removed. The scalar expression

which result are:

'(p) =7 sinp+2 7 (1 -cos (P),

t'() =4T(sinP- - 2 47 (1-cosp),

and
'(p)= sinp . (68)

After examining these equations it is found that the geometries which would

evolve here are identical in form to those found on Figs. (22) and (23). That is,

Fig. 22 is typical of the (4', C') trace when the T constant replace the initial

values ( 1o, f7o)*. Also, Fig. 23 has the same graphical form as would the trace

on the (77', ')-plane here. (Note that Eqs. (63a) are identical to those above

when the r. replace corresponding initial values).

Due to this similarity in the sketches, those which would normally appear

here will be deleted. The comparing of equation forms leads to an immediate

recognition of the analogous component geometries, etc.

(b) Hodographs in the Inertial Frame of Reference. Returning to Eqs.

(64) and recasting them in terms of the 7'. scalars, it is easy to show that the ex-

pressions for this situation are:

(p)= [sinp+2peosp-sin2]+T7( 2-2)cososp+psinp+2cos2p

H' (p)= -cosp+2psinp+cos2p +-2 sin-os+2sin

and

Z'(<p) = r sincp. (69)

*This argument supposes the tr. are positive valued like the ( o , o77, o
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Typical graphs, constructed on the ( ', Z') and (H', Z')-planes, are pre-

sented below as Figs. (31) and (32), respectively. From the sketch, and from Eqs.

(69) it is readily seen that divergence is present and can only be removed when the

in-plane force is removed (a trivial case). Shown on both figures are component

traces, for each r.-component, separately considered; and, the combined trace

which is indicative of the hodograph for a general 7 application*. (These plots

represent the hodograph for one orbital excursion. It is known that the linearized

solution results are subject to deterioration even for this restricted range of the

independent variable. However, the trends which are exhibited here do bear good

resemblance to the more accurately acquired numerical results). One caution:

the appearance of trace closure on the (H', Z') hodograph is (again) a consequence

of the mathematics, not a consequence of the system's dynamic response.

In the next section out-of-plane traces are developed for the application of

a specific disturbance force (TI), acting in directions parallel to the inertial frame

of reference. These graphs will be found to be analogous to those above; hence,

their complexity also reduces the discussions to generalities.

*These traces were constructed for the ri > 0. When either or both components
would have a sign change, the reversal in geometry is obvious. Changes in
magnitude would simply magnify the coordinate displacements.
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FIG. 31. Sketch showing out-of-plane hodograph traces due to T. components

with -0 = = 0. Note that individual (Ti, 7') traces are shown with

the composite trace (i).
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FIG. 32. Sketch for out-of-plane hodograph traces due to application of T
components, with (Ro = R = 0). Note that individual (7i, T ) traces
are shown in addition to the composite figure (s).
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XVI. OUT-OF-PLANE DISPLACEMENTS, DUE TO 7XVI.

(a) Local, Rotating Frame of Reference. The analytical solution for

displacements arising as a consequence of an applied force (7i) -- one aligned so

that there are fixed components parallel to the inertial frame of reference -- pro-

-ides only limited new information. This information arises solely in terms of

sI since coupling between it and other input disturbances is not apparent. As a

consequence only incremental displacements will be described below; and, of

course, the same arguments will hold for other descriptions (displacements and

hodographs alike).

The general analytical solution for displacements referred to the local,

rotating frame of reference, arising as a result of initial values and T1(-7 1

(7~ H' 7Z)) has been expressed by:

S((P) 12 +3(J 2 (J1  2  a i.v. +[12- pB2 j 1 Ko TI

+J 3  ocos+Ao sino+r (1-cosP. (70)

Only the TI parts of this result are of interest here; hence, only these partial

solutions will be discussed below. Consequencly these partial displacements are

noted by:

(I2 i= [2J1 +5J1 T2( 1 [ +2J2 [J2B+BT2 2 )]

+ J1 -2J2 TF - +

and

A(J 3 ) 3 1 (1 - cos P)l . (71)

For the construction of representative traces in this case, the format

of the equations is such that simple curve forms are not easy to identify, through-

out. Therefore, only the 7. (component) traces are presented on the figures;

yet,the reader can ascertain quickly the influence each component plays, the
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effect of change in sign, and the approximate overall geometry produced by this

disturbance force.

As an aid to visualizing these traces the scalar expressions from which

they are developed are:

(p)=27 [ sing-(1 -cosp) + TH sinp-pcosp

7(p)=37- p(1+cos)-2 sinp - 5 H (1-cosp)-3_ sinp ,

and

z () = 7r (1 - cos P). (72)

Fig. 33 (below) shows sketches of typical traces, due to 7- and 7 , on
I 7H

the (4, C)-plane*. Though it may not be immediately evident, both traces are

secular in both 7. components. These sketches have been constructed for only

one orbit of motion, hence they do not predict the trends for p > 2T.

Fig. 34 has been constructed to illustrate the influence of T. on the geo-

metric descriptions found for the (77, C)-plane. Here, too, both trace geometries

have a divergent characteristic arising from the force components (7,, TH)*.

These geometries are drawn for only one orbital passage also (c Z 2f1).

As before all of these figures are constructed under the supposition that

the T. components are positive constants. The reader can easily visualize the

consequences of a sign change in either or both components. Also, it is not

difficult to acquire some feeling for the shape of that trace which would result

from an application of all 7. components, simultaneously.

(b) Displacements in the Inertial Frame of Reference. With attention

focused on the added displacements, brought about by the application of 7 , it is

found that (symbolically) these may be written as:

A (12) = TR(-)T I ' (73a)

*The rl components are employed in pairs; i.e., both T- and "H are applied
separately, but each in conjunction with Tz.
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(TH, Tz )

FIG. 33. Sketch for typical ((, r) trace geometries due to q components.

Each curve above is for paired components of the specific force.
A composite figure is composed by summing coordinates.
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FIG. 34. This is the set of companion trace geometries for those shown on
FIG. 33. Note: Each sketch is for the indicated pair of I com-
ponents. Smallest scale divisions in vicinity of origin describe
equal scale increments.
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(see also Eqs. (72)); then the scalar expressions to be utilized are:

5()=2,. (1-cosp)+(1-cos2()- ,(sinp+ sin2p) + -5(p-sinp)
2 4

7 3
+ 4 (0-sin2)P11 

+ 4 cos2()p

4

H(9)=-2[(sino+sn2o)- (3+4coscp+cos2)+TH 51-cosp) - (1-cos2)

+4 sin2p] ,

and

Z( ) =7 (1 - cosP). (73b)
z

Out-of-plane displacements from these expressions, treating each of the

T. as separate actions, have been determined*. These appear on Fig. (35) and

(36) for the (=, Z)- and (H, Z)-planes, respectively. For the description of a

full trace (one produced by I (Tr, rH , 7z )), it is only necessary to sum coordinates

from the two representations shown below (for example).

Once again it should be recognized that these traces have divergent geometric

characteristics arising from both 73 and 7H . Hence it is not possible to acquire

a closed relative motion figure for these disturbances. Also, the complicated form

of these displacement expressions does not lend to describing these component

curves by simple and familiar names.

*The Ti have been arbitrarily chosen as positive constants here. The consequence
of sign change and magnification follows easily, by inspection.
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(, 'r
Hz z

FIG. 35. Sketch of out-of-plane geometries described for typical paired values
of 7 . The composite figure would be acquired by adding ordinates.
SmaAest scale divisions in vicinity of origin define equal scale
increments.
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FIG. 36. Typical out-of-plane geometries described by application of 7I com-

ponents alone. Note each graph is for a paired set of specific force

components. The full trace, for i, is obtained by adding ordinates.

Also, smallest scale divisions in vicinity of origin describe equal

coordinate increments.
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XVII. OUT-OF-PLANE HODOGRAPHS, DUE TO 7
I-

(a) Local, Rotating Frame of Reference. Hodographs for this situation

may be acquired by (say) differentiating the expressions in Eqs. (71). When this

is done one finds, as a result:

A(I2 2= - [2J1 +5J2B 2 2 + 2J2 2B 2 2B 2)B

+4 I -2J21B2 2((p)+B 2 2( ) I'
and

J 3 .&'(( ) -J3 TIsinp . (74a)

These expressions lead directly to hodographs which are produced by the external

force system TI, and for which the examples shown on Figs. (37) and (38) are

plotted. There, as before, the 7. components are assumed to be positive constants;

hence the sketches reflect this constraint*. For convenience, the scalar format

of the expressions above may be shown to be:

'() =1 [-sinP+3(poos] + 7H psin] ,
2 22

and '(p)=37, (1-cos(P)-sinp] - 27H [sin - cos ],
and

C'() = 7 sin(P . (74b)

(b) Inertial Frame of Reference. The hodographs to be mentioned here

are those analogous to the case above, except that the planes for description are now

referred to an inertial triad, as indicated. Taking account of the expressions in

Eq. (74) and recalling Eqs. (71), then it follows that:

a(I2R 2) (T )B 2 + 'I
and

J3I (P ) =J3 1 I sinp . (75a)

*Sign changes and magnifications can be visualized by an inspection of the graphs
and descriptive equations.
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FIG. 37. Typical out-of-plane hodograph traces due to paired specific force (T1)
components. Note: Each graph is for the specified pair of Ti-values
shown. A full hodograph figure, for r proper, is obtained by summing
ordinates. Smallest scale divisions, in vicinity of origin, represents
equal coordinate increments.
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FIG. 38. Hodograph traces, due to the application of specific force paired com-
ponents, as noted. The full hodograph can be obtained by summing
ordinates. Note: Smallest scale divisions, in vicinity of origin, denote
equal coordinate increments.
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When these matrices are expanded, and scalar expressions acquired, it is

found that an appropriate set (here) is:

'(0) = inp- sin2P+3c (cosp+ cos2(p) - H 5(1-cosp)- (1-cos2p)

+ sin 2 ,
2

H'(p) = - (1 - cos(p) - (1 - cos 2np) +3)(sinp+ sinT2) +[5sino- 11 2p

+ Wo cos 2p ,

and

Z'(p) = 7 sin~g. (75b)

Sketches of the trace geometries describing these analytical results are

found on Figs. (39) and (40), below. Those figures, being compatible with all

others contained here, are mainly presented to illustrate trends which will be

found for this disturbance type. The secularity for these coordinates is evident,

again; also, this character cannot be removed without an elimination of the force,

per se.

Throughout much of the work noted in these latter sub-sections it has

become more and more evident that the complexities of the inertial frame repre-

sentations, and referenced disturbances, lead to geometric difficulties. " These

difficulties relate to problems not so much mathematical, as semantic, in nature.

The traces produced for the out-of-plane situations are difficult to name; they

do not lead to elegant representations; and, finally, they do not fit a pattern of

predictability which one would hope to achieve. For these reasons, primarily,

a familarity with these problem conditions is needed if one is to be able to

estimate a priori results.
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FIG. 39. Typical hodograph traces developed by the application of specified
paired 7'I components, as noted. The full figure, due to 71 , is
described by summing ordinates. Smallest scale divisions, in
vicinity of origin, denotes equal coordinate increments.
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FIG. 40. Trace geometries developed through the application of paired 7~ com-

ponents, as noted. A composite hodograph figure is obtained by summing

ordinates. Note: Smallest scale divisions, in vicinity of the origin, de-

note equal coordinate increments.
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XVIII. SUMMARY

It has been shown, here, that, in general, geometric traces can be simply

constructed to illustrate the relative motions experienced by particles in a

number of problem situations. These diagrams will describe the displacements

and hodographs which arise as a consequence of initial value inputs and selected

disturbance (force) conditions.

Due to the linearization which has been imposed on the mathematical formu-

lation there has been a separation of the in-plane and out-of-plane coordinate

solutions. This, in turn, uncoupled results to the extent that the out-of-plane

geometries are not as elegantly described as the in-plane one. Also, this has led

to some loss in generalization, compared to the in-plane situations. In effect,

then, the construction of in-plane traces is easier to represent and to visualize.

The out-of-plane geometries are the more complicated cases and generally need

some added specializations in order to acquire figures which have some degree of

symmetry and simplicity.

It is of interest here to note that traces, representative of motion in the

local, rotating frame of reference, are composed from functions which have a

frequency equal to that of the base orbit. However, the geometries referred to

the inertial frame incorporate single and double frequency functions. Needless

to say this adds some complexity to the interpretation of trace geometries; and

adds to the difficulties of properly "naming" these various components. Aside

from the obvious secular (or divergence) terms which arise for the fixed thrusting

cases, there are secular effects which come about through the initial value inputs.

Generally, these latter influences can be removed only by the elimination of

certain terms, or combination of terms, as dictated (and noted) in the appropriate

sections of the documentation. As a general observation it has been found that

the secular nature of the traces (in particular, the displacement diagrams) can

be eliminated by the removal of initial velocity components which are parallel
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to the base orbit velocity vector. That is, so long as there are only initial velocity

vectors which are orthogonal to the reference (base orbit) vector, then there will

not be a secular characteristic for these traces.

A second, interesting observation is that the in-plane displacement traces

progress in opposite directions,depending on the frame of reference. Specifically,

for in-plane traces, referred to the inertial frame, the motion over the relative

displacement trace follows the base orbit motion. And, contrary to this, the dis-

placements,referred to the rotating frame, have a trace motion which is opposed to

the base orbit's direction. One rather simple explanation of this lies in the fact

that these frames of reference has a "rotation" relative to each other. That is,

the rotating frame (itself) has a rotation, equal to the base orbit's rotation, when

it is viewed from inertial space. In this regard, as an example, a point fixed

in the inertial relative frame would appear to rotate backward (against the orbit)

in the rotating frame. Of course, the converse is true when the two frames of

reference switch roles.

Also, herein, it has been demonstrated that the full in-plane traces may

be described by a summing of vectors, each of which is described in the general

equations. Each vector is selected on the basis of that geometric figure which it

described during each circuit of the base orbit. In this fashion, then, the sum of

these vectors is described by a sequence of geometries, all of which lead to those

loci which describe the overall trace geometry. Unfortunately this same device

cannot be used in the construction of out-of-plane traces. Some of those traces

have a relatively simple interpretation, others do not; consequently, this elegance

of definition is largely absent for the out-of-plane cases.
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